


### What is R?



$$R = \frac{|V_{tb}|^{2}}{|V_{tb}|^{2} + |V_{ts}|^{2} + |V_{td}|^{2}}$$

If one assumes three quark generations and CKM unitarity:

$$|V_{tb}| > 0.999$$
 @ 90% *CL*  $\Rightarrow$  R > 0.998 (PD*G*'04).

We can test SM assumptions using the relative rates of 0-, 1- and 2 tagged b-quarks in top-pair events

If all b-quarks are identified with efficiency  $\varepsilon_b$ :

$$N_0 = N_{tt} (1 - Re_b)^2$$

$$N_1 = 2N_{tt} Re_b (1 - Re_b)$$

$$N_2 = N_{tt} (Re_b)^2$$

- lacktriangle sensitive to product  $R\epsilon_b$
- overdetermined problem
- N<sub>tt</sub>, and therefore  $\sigma_{top}$ , cancels in the ratio

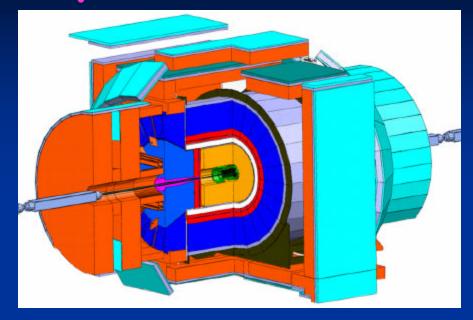
## How do we measure R?

Any two tagged rates can be used to measure  $R_{E_h}$ .

- $\epsilon_b$  is estimated from t simulation
- Knowing  $\varepsilon_b$ , we can extract R!

#### But....

- we tag b-jets, not b-quarks
- not all b-jets are taggable
- non-b quarks can be tagged too!


# Measure of R proceeds in three steps:

- Identify samples enriched in t events
  - Measure number of events in each tagged bin, N<sub>i, obs</sub>
  - Estimate background in each bin, N<sub>i, bkgr</sub>
- 2. Predict tag rates  $\varepsilon_i = \varepsilon_i$  (R  $\varepsilon_b$ )
- 3. Compare  $N_{i,exp}$  to  $N_{i,obs}$  using a likelihood technique

## Data Sample

Use 161 pb<sup>-1</sup> of data collected by CDF at vs = 1.96 TeV with good SI detector

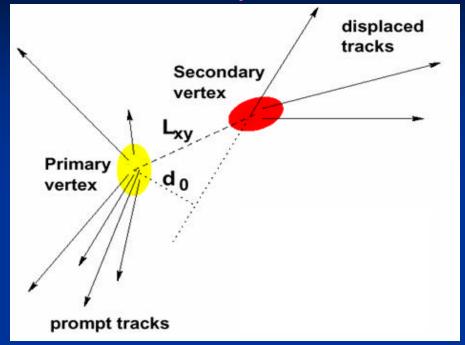
Use same samples as for top cross section analysis in lepton-plus-jets and dilepton channels.



- $\cdot$  one 20 GeV isolated lepton (e, $\mu$ )
- · high missing Et

L3J: + exactly 3 jet (high stat.)

L4J: + >=4 jets (better S/B)


LL: + second lepton + 2 or more jets



# Tagged Samples: Ni,obs

b-jets are identified using the SecVtx algorithm.

- high d<sub>0</sub> tracks in jets are constrained to come from a displaced secondary vertex
- jet tagging efficiency: from MC and calibrated with independent data samples: 44%
- false tag rate, from generic QCD jets: 0.5%



| Sample | L3J | L4J | LL |
|--------|-----|-----|----|
| 0-tag  | 358 | 79  | 5  |
| 1-tag  | 26  | 23  | 4  |
| 2-tag  | 3   | 5   | 2  |

# Tagged Background: Ni, bkgr

#### LL

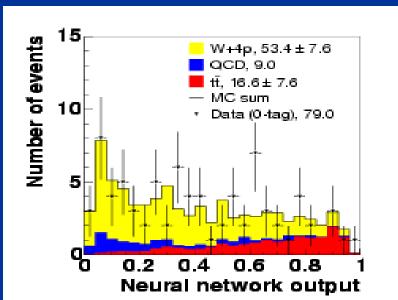
- Mostly from generic QCD radiation in Z/WW+jets
- Apply false tag probability matrix to pretagged dilepton candidates

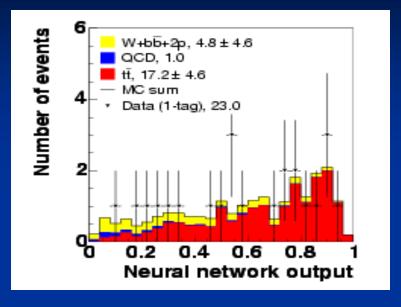
| LL                | 0-tag   | 1-tag   | 2-tag   |
|-------------------|---------|---------|---------|
| N <sub>bkgr</sub> | 2.0±0.6 | 0.2±0.2 | 0.0±0.0 |

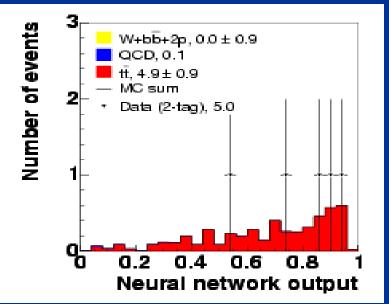
| L3J(DE)    | 0-tag   | 1-tag    | 2-tag   |
|------------|---------|----------|---------|
| $N_{bkgr}$ | [0,358] | 16.0±2.4 | 0.8±0.2 |

| L4J(DE)           | 0-tag  | 1-tag   | 2-tag   |
|-------------------|--------|---------|---------|
| N <sub>bkgr</sub> | [0,79] | 4.2±0.1 | 0.2±0.1 |

#### L3J/L4J


- Direct estimate of the SECVTX background rates, using datadriven and simulation based techniques, can be applied only to 1- and 2-tag bins.
- For 0-tag bin, can use at least knowledge of total number of events with no tags.
- Kinematic (NN) analysis provides independent estimate of background rates in each tagged bin which is consistent but less precise than DE.


| L4J(NN)           | 0-tag                | 1-tag                               | 2-tag               |
|-------------------|----------------------|-------------------------------------|---------------------|
| N <sub>bkgr</sub> | $62.4_{-9.3}^{+8.5}$ | 5.8 <sup>+5.6</sup> <sub>-5.2</sub> | $0.1^{+0.9}_{-0.0}$ |


DPF 2004 Monica Tecchio 6

# Lepton+jets Kinematic (NN) Analysis

- Single output NN trained on 9 kinematics variables, independent of b-tagging.
- Used for L4J channel only.
- Fit data to NN output templates for tt and W+jets background (plus fixed QCD component) to find top signal fractions.





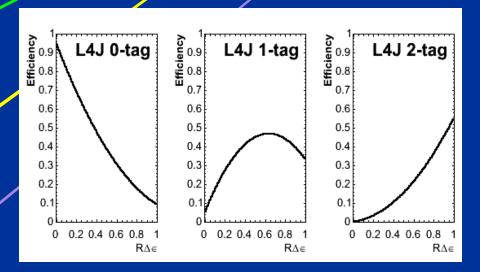


ica Tecchio

# Event Tagging Efficiencies: ei

# Tagged jets can come from a variety of sources.

- We estimate the efficiency to tag different b-like jets using the Monte Carlo
- b-quark in top decays
- 2. Light-quarks in top decays ( $\epsilon_q < 0.01$ )
  - → efficiency to tag a jet from top decays is:


$$Re_b + (1-R)e_q = R(e_b - e_q) + e_q$$

- 3. Quarks from W-decay and "other" jets from additional QCD radiation.

  Do not depend on R!
- Tagging efficiency apply only if jets are taggable i.e. within the SecVtx fiducial region.

Event tagging efficiency becomes:

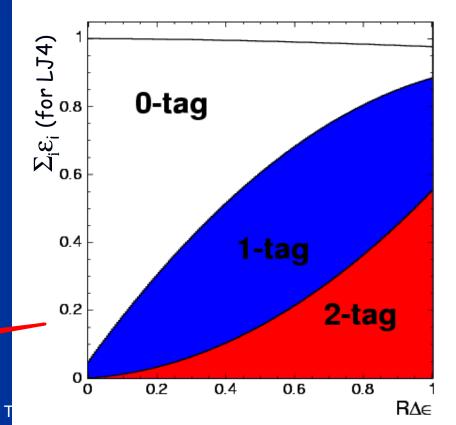
$$e_i = e_i (R \Delta e, e_W, e_o, F_{bWo})$$



### Likelihood

We use a likelihood function to characterize consistency of the observed tag rates with a given value of RΔε.

$$\mathcal{L} = \prod_{i \text{ -tag}} \mathcal{P}(N_{i,obs}, N_{i,exp}) \times \mathcal{G}$$


Inside the Poisson terms  ${\cal P}$ 

$$N_{i,exp} = N_{pre} \times e_i + N_{i,bkgr}$$

The number of  $t\overline{t}$  candidates before tagging,  $N_{pre}$ , is dependent on  $R\Delta\epsilon$ 

$$N_{pre} = \frac{\sum_{j} N_{i,obs} - \sum_{i} N_{i,bkgr}}{\sum_{i} e_{i}}$$

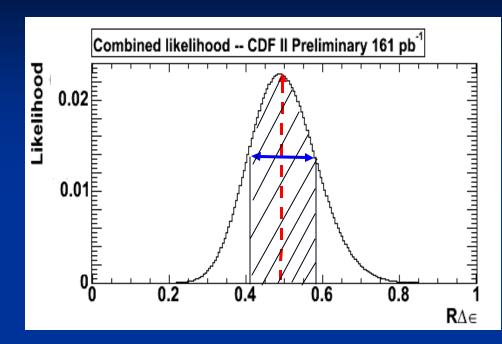
 The gaussian term G takes care of systematic uncertainties from backgr. normalization and jet efficiencies



**DPF 2004** 

Monica 7

### Combined Likelihood


- Final likelihood is the product of likelihoods for the LL, L3J and L4J samples.
- From peak and interval containing 68% of area:

$$R \Delta e = 0.49^{+0.09}_{-0.08}$$

= Assuming nominal  $\Delta \epsilon = 0.44 \pm 0.03$ :

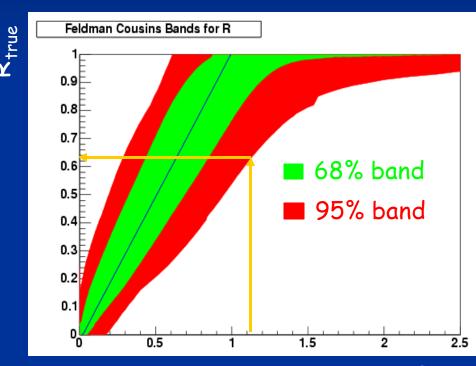
$$R = 1.11^{+0.21}_{-0.19}$$

Statistically limited. Systematics contribute  $\sim\!15\%$  of total uncertainty, dominated by uncertainty on  $\epsilon_{\rm b}$ .



 NN analysis alone produces a prediction for the number of top and background event in each tagged bin and can be used to extract R

$$R = 1.06^{+0.31}_{-0.29}$$


consistent with SecVtx result.

### Feldman-Cousins Limit

- To interpret our combined likelihood result, which is outside physical boundary of  $0 \le R \le 1$ , we use FC method to derive 95% acceptance bands for any  $R_{obs}$  vs  $R_{true}$
- Acceptance bands include statistical and systematic error

R > 0.62 @ 95 C.L.

CDF II Preliminary, 161 pb-1



Robs

### Conclusions

- We have measured the ratio  $R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$  in 161 pb<sup>-1</sup> of top quark decays collected with CDF II
- By comparing the relative rates of identified b-jets in events reconstructed both as dilepton or lepton-plus-jets, we measure:

$$R = 1.11^{+0.21}_{-0.19}$$

or, using Feldman-Cousins limit prescription,

- Improves CDF Run I limit of R > 0.56 @ 95 C.L.
- Expect more stringent limit with more statistics!

# Measurement of

$$R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$$

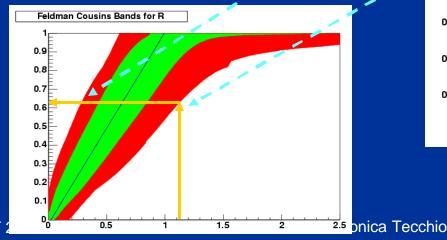
## Backup slides

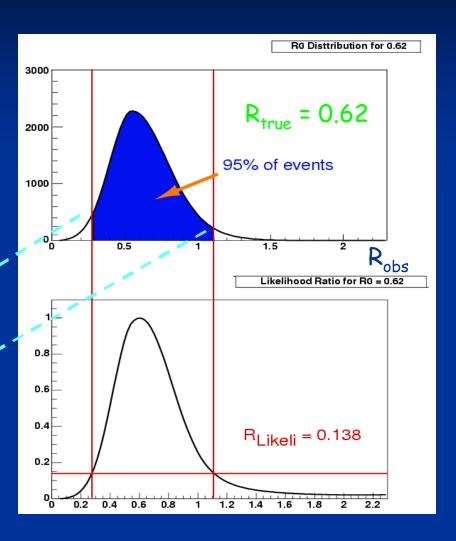
# Partial Sample Results

| Sample         | RΔε                    | R (assuming            |
|----------------|------------------------|------------------------|
|                | Central value          | nominal Δε)            |
| SECVTX-only LJ | $0.42^{+0.15}_{-0.14}$ | $0.96^{+0.32}_{-0.34}$ |
| SECVTX + NN LJ | $0.45^{+0.10}_{-0.09}$ | 1.04+0.24              |
| Dilepton       | $0.61^{+0.19}_{-0.16}$ | $1.40^{+0.45}_{-0.38}$ |
| Combined       | $0.49^{+0.09}_{-0.08}$ | $1.11^{+0.21}_{-0.19}$ |

- Uncertainty on R includes 7% from SF uncertainty.
- If we assume R=1:  $\Delta e = 0.49^{+0.09}_{-0.08}$

#### consistent with nominal value of $\Delta e = 0.44 \pm 0.03$


lacksquare  $\Delta \epsilon$  in dilepton and lepton plus jets agree.


### Feldman-Cousin Method

FC prescribes a method that unifies 1-sided vs 2-sided interval and ensures a physical results.

- 1. Find expected  $R_{obs}$  for different values of  $R_{true}$
- For each R<sub>true</sub> set α%
   confidence bands in R<sub>meas</sub> using
   a likelihood ratio ordering
   principle
- Find smallest R<sub>true</sub> for which R<sub>obs</sub> is inside confidence band

**DPF** 



